Istituto Rudy Lanza - Alta formazione in Naturopatia

Istituto Rudy Lanza - Catalogo bibliografico delle tesi

Gli abstracts delle tesi in Naturopatia elaborate presso l'Istituto Rudy Lanza

Regolazione delle sirtuine e processi di invecchiamento cellulare: ruolo dei polifenoli.

Autore/autrice
Galdiolo Lara
Anno
2011
Numero
1302

Abstract

Negli ultimi decenni l’allungamento della vita media e della sua durata massima, l’elevata presenza di soggetti anziani nella popolazione generale, specialmente nei paesi sviluppati, e l’incremento della spesa sanitaria e sociale hanno stimolato, sia nei ricercatori dell’area economico-sociale che in quelli dell’area biomedica, un particolare interesse nello studio dei processi dell’invecchiamento.

Nella presente trattazione saranno prese in considerazione e discusse le teorie più accreditate che cercano di spiegare in modo più o meno completo il processo dell’invecchiamento. Basandosi sull’evidenza che molti meccanismi possono interagire simultaneamente operando a diversi livelli di organizzazione funzionale, la visione dell’invecchiamento come processo multifattoriale complesso ha sostituito le precedenti teorie “monofattoriali” che vedevano una singola causa come responsabile di tale fenomeno. Di fatto molte teorie singolarmente possono spiegare alcuni dei fenomeni che caratterizzano un invecchiamento cosiddetto “fisiologico”, ma non possono dare ragione del processo nella sua globalità.

Il sistema più accreditato attualmente fa intervenire come elemento centrale del processo di senescenza l’equilibrio tra i fenomeni di degradazione e di riparazione dell’organismo. In questo sistema, l’invecchiamento sarebbe il risultato della lotta permanente ma sempre fatale tra l’efficacia dei sistemi di mantenimento e di riparazione dell’organismo, e dell’intensità di alcuni processi che tendono ad alterarlo e degradarlo. L’equilibrio di forze in gioco è influenzato in modo variabile da fattori energetici, genetici e ambientali propri di ciascun individuo. Tuttavia, almeno due aggressori partecipano in misura maggiore ai processi di distruzione dell’organismo: le forme attive dell’ossigeno o radicali liberi e alcuni zuccheri abbondantemente presenti nell’organismo come il glucosio.

Tra i diversi approcci di ricerca e interventi antiaging, la riduzione dell’intake calorico rimane la via più accreditata. Studi in numerose specie (lieviti, elminti, mammiferi) hanno mostrato che la restrizione calorica (CR) può ridurre l’incidenza e rallentare l’insorgenza di patologie legate all’età (malattie cardiovascolari e neurodegenerative), migliorare la resistenza allo stress e decelerare il declino funzionale e anche aumentare il lifespan. La ricerca è ora finalizzata a stabilire se tale intervento nutrizionale sia rilevante ai fini dell’invecchiamento dell’uomo.

Negli organismi inferiori come i lieviti è stato osservato che l’esposizione a stress di lieve entità quali stress osmotico e un modesto shock termico e la restrizione calorica attivano dei geni detti Sir2 che codificano degli enzimi denominati Sirtuine. Negli organismi superiori il gene omologo è il SIRT1.

Le Sirtuine sono una famiglia di enzimi deacetilasici coinvolti nel processo di attivazione e disattivazione dei geni. Il SIRT1 elimina i gruppi acetilici dalle proteine attraverso il loro trasferimento al NAD+.

Il gene SIRT1 è collocato nel cromosoma 10 e codifica la proteina Sirt1 che è in grado di deacetilare proteine nucleari e citoplasmatiche che controllano processi cellulari critici come l’apoptosi e il metabolismo. Il gene SIRT1 regola la produzione di insulina e glucosio, il metabolismo lipidico e la sopravvivenza cellulare. E’ per tale ragione che le Sirtuine possono mediare gli effetti della restrizione calorica nei mammiferi.

Nel 2003 un ricercatore americano Sinclaire evidenziò come i polifenoli tra cui la quercetina, il resveratrolo, la buteina e altri sono in grado di esercitare nei lieviti saccaromiceti gli stessi effetti osservati dalla restrizione calorica. Ciò è molto importante perché se i dati potessero essere trasferiti all’uomo significherebbe che noi potremmo ottenere un aumento della nostra aspettativa di vita senza sottoporci a una faticosa restrizione calorica.

Recentemente altre sostanze di natura fenolica sono state viste esecitare degli effetti simili, questi composti sono le catechine ed in particolare quella più attiva è la EGCG presente nel tè verde.

Uno studio del 2010 evidenzia come i polifenoli siano in grado di attivare i geni SIRT, i quali aumentando la produzione di Sirtuine modulano in senso positivo una serie di effetti che sono chiamati in causa nelle principali malattie degenerative dell’uomo. Intervengono nella regolazione dell’apoptosi, miglioramento della risposta allo stress, regolazione dell’infiammazione, modulazione dell’azione della proteina P53, diabete, metabolismo lipidico ecc.

L’impiego di alcune sostanze polifenoliche in grado di stimolare i geni SIRT potrebbe contribuire alla cura e alla prevenzione delle principali malattie degenerative, rallentando i processi di invecchiamento. Tuttavia le evidenze sono ancora limitate a modelli animali e mancano informazioni circa la loro eventuale efficacia e applicabilità sull’uomo.

Fonti

Bibliografia:

Teorie dell’invecchiamento

  • 1 Poulton EB, Schonland S, Shipley AE. Essays Upon Heredity and Kindred Biological Problems. 2nd ed. vol. 1. Oxford: Clarendon Press 1891.
  • 2 Dufour E, Larsson NG. Understanding aging: revealing order out of chaos. Biochim Biophys Acta 2004;1658:122-32.
  • 3 Wachter KW, Finch CE. Between Zeus and the Salmon. Washington: National Academy Press 1997.
  • 4 Weinert BT, Timiras PS. Theories of aging. J Appl Physiol 2003;95:1706-16.
  • 5 Kowald A, Kirkwood TB. A network theory of ageing: the interactions of defective mitochondria, aberrant proteins, free radicals and scavengers in the ageing process. Mutat Res 1996;316:209-36.
  • 6 Carey JR. Theories of life span and aging. Physiological Basis of Aging and Geriatrics. 3th ed. Boca Raton: CRC Press 2003:85-95.
  • 7 Sacher GA. Evolutionary theory in gerontology. Perspect Biol Med 1982;25:339-53.
  • 8 Harman D. The free radical theory of aging. Antioxid Redox Signal 2003;5:557-61.
  • 9 Bowen RL, Atwood CS. Living and dying for sex. A theory of aging based on the modulation of cell cycle signalling by reproductive hormones. Gerontology 2004;50:265-90.
  • 10 Gavrilov LA, Gavrilova NS. The reliability-engineering approach to the problem of biological aging. Ann N Y Acad Sci 2004;1019:509-12.
  • 11 Kanungo MS. A model for ageing. J Theor Biol 1975;53:253-61.
  • 12 Pletcher SD, Macdonald SJ, Marguerie R, Certa U, Stearns SC, Goldstein DB, et al. Genome wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr Biol 2002;12:712-23.
  • 13 Weindruch R, Kayo T, Lee CK, Prolla TA. Gene expression profiling of aging using DNA microarrays. Mech Ageing Dev 2002;123:177-93.
  • 14 Zou S, Meadows S, Sharp L, Jan LY, Jan YN. Genome-wide study of aging and oxidative stress response in Drosophila melanogaster. Proc Natl Acad Sci USA 2000;97:13726-31.
  • 15 Kirkwood TB. New science for an old problem. Trends Genet 2002;18:441-2.
  • 16 Snoke MS, Promislow DE. Quantitative genetic tests of recent senescence theory: age-specific mortality and male fertility in Drosophila melanogaster. Heredity 2003;91:546-56.
  • 17 Reinke V. Functional exploration of the C. elegans genome using DNA microarrays. Nat Genet 2002;32:541-6.
  • 18 Weindruch R, Kayo T, Lee CK, Prolla TA. Microarray profiling of gene expression in aging and its alteration by caloric restriction in mice. J Nutr 2001;131:918S-923S.
  • 19 Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-like signals. Science 2003;299:1346-51.
  • 20 Finch CE, Ruvkun G. The genetics of aging. Annu Rev Genomics Hum Genet 2001;2:435-62.
  • 21 Perls T, Kunkel L, Puca A. The genetics of aging. Curr Opin Genet Dev 2002;12:362-9.
  • 22 Perls TT, Wilmoth J, Levenson R, Drinkwater M, Cohen M, Bogan H, et al. Life-long sustained mortality advantage of siblings of centenarians. Proc Natl Acad Sci USA 2002;99:8442-7.
  • 23 Puca AA, Daly MJ, Brewster SJ, Matise TC, Barrett J, Shea- Drinkwater M, et al. A genome wide scan for linkage to human exceptional longevity identifies a locus on chromosome 4. Proc Natl Acad Sci USA 2001;98:10505-8.
  • 24 Haldane JBS. New Paths in Genetics. London: Allen & Unwin 1941.
  • 25 Medawar PB. An Unsolved Problem in Biology. London: H.K. Lewis 1952.
  • 26 Partridge L, Gems D. Mechanisms of ageing: public or private? Nat Rev Genet 2002;3:165-75.
  • 27 Sozou PD, Seymour RM. To age or not to age. Proc R Soc Lond B Biol Sci 2004;7:457-63.
  • 28 Zafon C. Ageing purpose: another thrifty genotype. Med Hypotheses 2003;61:482-5.
  • 29 Arantes-Oliveira N, Apfeld J, Dillin A, Kenyon C. Regulation of life-span by germline stem cells in Caenorhabditis elegans. Science 2002;295:502-5.
  • 30 Sgro CM, Partridge L. A delayed wave of death from reproduction in Drosophila. Science 1999;286:2521-4.
  • 31 Arking R, Buck S, Novoseltev VN, Hwangbo DS, Lane M. Genomic plasticity, energy allocations, and the extended longevity phenotypes of Drosophila. Ageing Res Rev 2002;1:209-28.
  • 32 Miller JK. Escaping senescence: demographic data from the three-toed box turtle (Terrapene carolina triunguis). Exp Gerontol 2001;36:829-32.
  • 33 Keller L, Genoud M. Extraordinary lifespans in ants: A test of evolutionary theories of ageing. Nature 1997;389:958-60.
  • 34 Kirkwood TB. Evolution of ageing. Nature 1977;270:301-4.
  • 35 Kirkwood TB. Human senescence. Bioessays 1996;18:1009-16.
  • 36 Rachmatulina IK. Major demographic characteristics of populations of certain bats from Azerbaijan. In: Horacek J, Vohralik V, eds. Prague Studies in Mammalogy. Prague: Charles University Press 1992:127-41.
  • 37 Wilkinson GS, South JM. Life history, ecology and longevity in bats. Aging Cell 2002;1:124-31.
  • 38 Barclay RMR, Harder LD. Life histories of bats: life in the slow lane. In: Kunz TH, Fenton MB, eds. Bat Ecology. Chicago: University of Chicago Press. 2003:209-253
  • 39 Brunet-Rossinni AK, Austad SN. Ageing studies on bats: a review. Biogerontology 2004;5:211 22.
  • 40 Gavrilova NS, Gavrilov LA, Semyonova VG, Evdokushkina GN. Does exceptional human longevity come with a high cost of infertility? Testing the evolutionary theories of aging. Ann N Y Acad Sci. 2004;1019:513-7.
  • 41 Harman D. Aging: A theory based on free radical and radiation chemistry. J Gerontol 1957;2:298-300.
  • 42 Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000;408: 239-47.
  • 43 Mehlhorn RJ. Oxidants and Antioxidants in Aging. In: Timiras PS. Third ed. Physiological Basis of Aging and Geriatrics. Boca Raton: CRC Press 2003:61-83. TEORIE DELL’INVECCHIAMENTO 71
  • 44 Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev 1998;78:547 81.
  • 45 Byrne JA, Grieve DJ, Cave AC, Shah AM. Oxidative Stress and Heart Failure. Arch Mal Coeur 2003;96:214-21.
  • 46 Miwa S, Riyahi K, Partridge L, Brand MD. Lack of correlation between mitochondrial reactive oxygen species production and life span in Drosophila. Ann N Y Acad Sci 2004;1019:388-91.
  • 47 Brunet Rossinni AK. Testing the free radical theory of aging in bats. Ann N Y Acad Sci 2004;1019:506-8.
  • 48 Tower J. Transgenic methods for increasing Drosophila life span. Mech Ageing Dev 2000;118:1-4.
  • 49 Arking R, Burde V, Graves K, Hari R, Feldman E, Zeevi A, et al. Forward and reverse selection for longevity in Drosophila is characterized by alteration of antioxidant gene expression and oxidative damage patterns. Exp Gerontol 2000;35:167-85.
  • 50 Larsen PL. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci U S A 1993;90:8905-9.
  • 51 Melov S, Ravenscroft J, Malik S, Gill MS, Walker DW, Clayton PE, et al. Extension of life-span with superoxide dismutase/ catalase mimetics. Science 2000;289:1567-9.
  • 52 Golden TR, Hinerfeld DA, Melov S. Oxidative stress and aging: beyond correlation. Aging Cell. 2002;1:117-23.
  • 53 Huang TT, Carlson EJ, Gillespie AM, Shi Y, Epstein CJ. Ubiquitous overexpression of CuZn superoxide dismutase does not extend life span in mice. J Gerontol A Biol Sci Med Sci 2000;55:B5 9.
  • 54 Caratero A, Courtade M, Bonnet L, Planel H, Caratero C. Effect of a continuous gamma irradiation at a very low dose on the life span of mice. Gerontology 1998;44:272-6.
  • 55 Merry BJ. Molecular mechanisms linking calorie restriction and longevity. Int J Biochem Cell Biol 2002; 34:1340-54.
  • 56 Mandavilli BS, Santos JH, Van Houten B. Mitochondrial DNA repair and aging. Mutat Res 2002;509:127-51.
  • 57 Shringarpure R, Davies KJ. Protein turnover by the proteasome in aging and disease. Free Radic Biol Med 2002;32:1084-9.
  • 58 Terman A, Dalen H, Eaton JW, Neuzil J, Brunk UT. Aging of cardiac myocytes in culture: oxidative stress, lipofuscin accumulation, and mitochondrial turnover. Ann N Ycad Sci 2004;1019:70-7.
  • 59 Schipper HM. Brain iron deposition and the free radicalmitochondrial theory of ageing. Ageing Res Rev 2004;3:265-301.
  • 60 Poon HF, Calabrese V, Scapagnini G, Butterfield DA. Free radicals: key to brain aging and heme oxygenase as a cellular response to oxidative stress. J Gerontol A Biol Sci Med Sci 2004;59:478-93.
  • 61 Wakayama T, Shinkai Y, Tamashiro KL, Niida H, Blanchard DC, Blanchard RJ, et al. Cloning of mice to six generations. Nature 2000;407:318-9.
  • 62 Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965;37:614-36.
  • 63 Campisi J. Cellular Senescence and Cell Death. In: Timiras PS. Third ed. Physiological Basis of Aging and Geriatrics. Boca Raton: CRC Press 2003:47-59.
  • 64 Blackburn EH. Telomere states and cell fates. Nature 2000;408:53-6.
  • 65 Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998;279:349-52.
  • 66 Collins K. Mammalian telomeres and telomerase. Curr Opin Cell Biol 2000;12:378-83.
  • 67 Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 1996;18:173-9.
  • 68 Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994;266:2011-5.
  • 69 Reddel RR. The role of senescence and immortalization in carcinogenesis. Carcinogenesis 2000;21:477-84.
  • 70 Manestar-Blazic T. Hypothesis on transmission of longevity based on telomere length and state of integrity. Med Hypotheses 2004;62:770-2.
  • 71 Rubin H. The disparity between human cell senescence in vitro and lifelong replication in vivo. Nat Biotechnol 2002;20:675-81.
  • 72 Wright WE, Shay JW. Historical claims and current interpretations of replicative aging. Nat Biotechnol 2002;20:682-8.
  • 73 Hipkiss AR. Errors, mitochondrial dysfunction and ageing. Biogerontology 2003;4:397-400.
  • 74 Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 1995;92:9363-7.
  • 75 Krtolica A, Campisi J. Cancer and aging: a model for the cancer promoting effects of the aging stroma. Int J Biochem Cell Biol 2002;34:1401-14.
  • 76 Chang E, Harley CB. Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Sci U S A 1995;92:11190-4.
  • 77 Fenton M, Barker S, Kurz DJ, Erusalimsky JD. Cellular senescence after single and repeated balloon catheter denudations of rabbit carotid arteries. Arterioscler Thromb Vasc Biol 2001;21:220-6.
  • 78 Vasile E, Tomita Y, Brown LF, Kocher O, Dvorak HF. Differential expression of thymosin beta-10 by early passage and senescent vascular endothelium is modulated by VPF/VEGF: evidence for senescent endothelial cells in vivo at sites of atherosclerosis. Faseb J 2001;15:458-66.
  • 79 Martin GM, Oshima J. Lessons from human progeroid syndromes. Nature 2000;408:263-6.
  • 80 Lebel M, Leder P. A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular proliferative capacity. Proc Natl Acad Sci USA 1998;95:13097-102.
  • 81 Martin GM, Sprague CA, Epstein CJ. Replicative life-span of cultivated human cells. Effects of donor’s age, tissue, and genotype. Lab Invest 1970;23:86-92.
  • 82 Donehower LA. Does p53 affect organismal aging? J Cell Physiol 2002;192:23-33.
  • 83 Chin L, Artandi SE, Shen Q, Tam A, Lee SL, Gottlieb GJ, et 72 N. FERRARA, G. CORBI, ET AL. al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 1999;97:527-38.
  • 84 Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992;356:215-21.
  • 85 Promislow DE. Protein networks, pleiotropy and the evolution of senescence. Proc R Soc Lond B Biol Sci 2004; 22:1225-34.
  • 86 Sherr CJ, DePinho RA. Cellular senescence: mitotic clock or culture shock? Cell 2000;102:407 10.
  • 87 Finch CE. Longevity, Senescence and the Genome. Chicago: University of Chicago Press 1990.
  • 88 Finch CE. The regulation of physiological changes during mammalian aging. Q Rev Biol 1976;51:49-83.
  • 89 Timiras P. Neuroendocrine models regulating lifespan. In: Schreibman MP, Scanes CG. Development, maturation and senescence of neuroendocrine systems: a comparative approach. New York: Academic Press 1989.
  • 90 Timiras PS. Physiological Basis of Aging and Geriatrics. Third ed. Boca Raton: CRC Press 2003.
  • 91 Geraert E. Constant and continuous growth reduction as a possible cause of ageing. Int J Dev Biol 2004;48:271-4.
  • 92 Bahr BA, Vanderklish PW, Ha LT, Tin MT, Lynch G. Spectrin breakdown products increase with age in telencephalon of mouse brain. Neurosci Lett 1991;131:237-40.
  • 93 Vanderklish PW, Bahr BA. The pathogenic activation of calpain: a marker and mediator of cellular toxicity and disease states. Int J Exp Pathol 2000;81:323-39.
  • 94 Croall DE, DeMartino GN. Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol Rev 1991;71:813-47.
  • 95 Sloane JA, Hinman JD, Lubonia M, Hollander W, Abraham CR. Age-dependent myelin degeneration and proteolysis of oligodendrocyte proteins is associated with the activation of calpain-1 in the rhesus monkey. J Neurochem 2003;84:157-68.
  • 96 Baudry M, DuBrin R, Beasley L, Leon M, Lynch G. Low levels of calpain activity in Chiroptera brain: implications for mechanisms of aging. Neurobiol Aging 1986;7:255-8.
  • 97 Hofman MA. Energy metabolism, brain size and longevity in mammals. Q Rev Biol 1983;58:495-512.
  • 98 Bernard C. Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux. Paris: J.B. Bailliere 1878-79.
  • 99 Cannon WB. The Wisdom of the Body. New York: WW Norton & Co 1932.
  • 100 McEwen BS. The End of Stress as We Know It. Washington: Joseph Henry Press 2002.
  • 101 Selye H. The Stress of Life. New York: McGraw-Hill 1976.
  • 102 Udelsman R, Blake MJ, Stagg CA, Li DG, Putney DJ, Holbrook NJ. Vascular heat shock protein expression in response to stress. Endocrine and autonomic regulation of this age-dependent response. J Clin Invest 1993;91:465-73.
  • 103 Wise PM, Scarbrough K, Lloyd J, Cai A, Harney J, Chiu S, et al. Neuroendocrine concomitants of reproductive aging. Exp Gerontol 1994;29:275-83.
  • 104 Kawano T, Ito Y, Ishiguro M, Takuwa K, Nakajima T, Kimura Y. Molecular cloning and characterization of a new insulin/IGF-like peptide of the nematode Caenorhabditis elegans. Biochem Biophys Res Commun 2000;273:431-6.
  • 105 Vina J, Sastre J, Pallardo F, Borras C. Mitochondrial theory of aging: importance to explain why females live longer than males. Antioxid Redox Signal 2003;5:549-56.
  • 106 Effros RB. From Hayflick to Walford: the role of T cell replicative senescence in human aging. Exp Gerontol 2004;39:885-90.
  • 107 Franceschi C, Valensin S, Bonafe M, Paolisso G, Yashin AI, Monti D, et al. The network and the remodeling theories of aging: historical background and new perspectives. Exp Gerontol 2000;35:879-96.
  • 108 Ginaldi L, Sternberg H. The Immune System. In: Timiras PS. Third ed. Physiological Basis of Aging and Geriatrics. Boca Raton: CRC Press 2003.
  • 109 George AJ, Ritter MA. Thymic involution with ageing: obsolescence or good housekeeping? Immunol Today 1996;17:267-72.
  • 110 Franceschi C, Monti D, Sansoni P, Cossarizza A. The immunology of exceptional individuals: the lesson of centenarians. Immunol Today 1995;16:12-6.
  • 111 Wikby A, Johansson B, Olsson J, Lofgren S, Nilsson BO, Ferguson F. Expansions of peripheral blood CD8 T-lymphocyte subpopulations and an association with cytomegalovirus seropositivity in the elderly: the Swedish NONA immune study. Exp Gerontol 2002;37:445-53.
  • 112 Pawelec G, Ouyang Q, Wikby A. Pathways to a robust immune response in the elderly. In: Mountz JD. Immunology and Allergy Clinics of North America: Impact of Immune Senescence on Human Aging. vol. 23. Philadelphia: WB Saunders Co 2003:1-13.
  • 113 Panossian L, Porter VR, Valenzuela HF, Masterman D, Reback E, Cummings J, et al. Telomere shortening in T cells correlates with Alzheimer’s disease status. Neurobiol Aging 2002;24:77-84.
  • 114 Pietschmann P, Grisar J, Thien R, Willheim M, Kerschan-Schindl K, Preisinger E, et al. Immune phenotype and intracellular cytokine production of peripheral blood mononuclear cells from postmenopausal patients with osteoporotic fractures. Exp Gerontol 2001;36:1749-59.
  • 115 Arron JR, Choi Y. Bone versus immune system. Int Immunol 2000;408:535-6.
  • 116 Samani NJ, Boultby R, Butler R, Thompson JR, Goodall AH. Telomere shortening in atherosclerosis. Lancet 2001;358:472-3.
  • 117 Jonasson L, Tompa A, Wikby A. Expansion of peripheral CD8 ? T cells in patients with coronary artery disease: relation to cytomegalovirus infection. J Intern Med 2003;254:472-8.
  • 118 de Boer OJ, Becker AE, van der Wal AC. T lymphocytes in atherogenesis-functional aspects and antigenic repertoire. Cardiovasc Res 2003;60:78-86.
  • 119 Shock NW. Age changes in physiological functions in the total animal: The role of tissue loss. In: Strehler BL, Ebert JD, Shock NW. Third ed. The Biology of Aging: a Symposium. Washington, DC: Am Inst Biol Sci 1960.
  • 120 Rowe JW, Kahn RL. Human aging: usual and successful. Science 1987;237:143-9.
  • 121 Rowe JW, Kahn RL. Successful aging. Aging 1998;10:142-4. TEORIE DELL’INVECCHIAMENTO 73
  • 122 Mobbs CV, Bray GA, Atkinson RL, Bartke A, Finch CE, Maratos- Flier E, et al. Neuroendocrine and pharmacological manipulations to assess how caloric restriction increases life span. J Gerontol A Biol Sci Med Sci 2001;56:34-44.
  • 123 Weindruch R, Walford RL. The Retardation of Aging and Diseases by Dietary Restriction. Springfield, IL: Thomas 1998.
  • 124 Lane N. A unifying view of ageing and disease: the double-agent theory. J Theor Biol 2003;21:531-40

Meccanismi dell’invecchiamento

  • 1 Baynes JW, Thorpe SR: Glycoxidation and lipoxidation in atherogenesis. Free Radic Biol Med 2000, 28:1708-1716
  • 2 Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev 1998;78:547 81.
  • 3 Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000;408: 239-47.
  • 4 Harman D. Aging: A theory based on free radical and radiation chemistry. J Gerontol 1957;2:298-300.
  • 5 Mehlhorn RJ. Oxidants and Antioxidants in Aging. In: Timiras PS. Third ed. Physiological Basis of Aging and Geriatrics. Boca Raton: CRC Press 2003:61-83. Teorie dell’invecchiamento 71
  • 6 Monnier VM: Nonenzymatic glycosylation, the Maillard reaction and the aging process. J Gerontol 1990, 45:B105-B111
  • 7 Singh R, Barden A, Mori T, Beilin L. Advanced glycation end products: a review. Diabetologia. 2001;44:129-146.
  • 8 Thomalloy PJ: Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification af AGEs. Cell Md Biol (Noby-la-grand) 1998, 44:1013-1023
  • 9 Thorpe SR, Baynes JW: Maillard reaction products in tissue proteins: new products and new prospectives. Amino Acids 2003, 25:275-281

Sirtuine e geni Sirt

  • 1 Barzilai N., Gabriely I., The role of fat depletion in the biological benefits of caloric restriction, J. Nutr. 131 (3): 903S-906S, 2001
  • 2 Baur J.A., Pearson K.J et al, Nature 444: 337-42, 2006
  • 3 Cohen H.J., Miller C. et al., Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase, Science 305: 390-92, 2004
  • 4 Denu J.M., The Sir2 family of protein deacetylases, Current Opinion in Chemical Biology 9:431- 40, 2005
  • 5 Dirks A.J., Leeuwenburg C., Caloric restriction in humans: potential pitfalls and health concerns, Mech. Ageing and Development 127: 1-7, 2006
  • 6 Everitt AV, Roth GS et al., Caloric restriction versus drug therapy to delay the onset of aging diseases and extend life, Age 27: 39-48, 2005
  • 7 Fontana L., Meyer T.E. et al., Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans, PNAS 101 (17): 6659-63, 2004
  • 8 Heilbronn L.K., de Jonge L. et al., Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation and oxidative stress in overweight individuals: a randomised controlled trial, JAMA 295 (13): 1539-48, 2006
  • 9 Hoi Koo S. e Montminy M., In vino veritas: A tale of Two Sirts?, Cell 127: 1091-93, 2006
  • 10 Ingram D.K., Anson R.M., Development of calorie restriction mimetics as a prolongevity strategy, Ann. N.Y. Acad. Sci. 1019: 412-423, 2004
  • 11 Ingram D.K., Zhu M. et al., Calorie restriction mimetics : an emerging research field, Aging Cell 5 : 97-108, 2006
  • 12 Lagouge M., Argmann C. et al., Cell 127: 1109-22, December 2006
  • 13 Roth G.S, Lane M.A. et al, Caloric Restriction Mimetics, the next phase, Ann. N.Y. Acad. Sci. 1057: 365-71, 2005
  • 14 Phelan J.P, Rose M.R., Why dietary restriction substantially increases longevity in animal models but won’t in humans, Ageing Res. Rev. 4: 339-50, 2005
  • 15 Roth G.S. et al., Biomarkers of caloric restriction may predict longevity in humans, Science 297: 811, 2002
  • 16 Sinclair D.A., Toward a unified theory of caloric restriction and longevity regulation, Mechanism of Ageing and Development 126: 987-1002, 2005
  • 17 Thimmappa S.A., Resveratrol- A boon for treating Alzheimer’s disease?, Brain Res. Rev. 52: 316-26, 2006
  • 18 Willcox D.C., Willcox B.J. et al., Caloric restriction and human longevity: what can we learn from the Okinawans?, Biogerontology 7: 173-77, 2006
  • 19 Willcox B.J. et al., How much should we eat? The association between energy intake and mortality in a 36-year follow-up study of Japanese American men, J. Gerontol. Biol. Sci. 59: 789-95, 2004
  • 20 Wood J.G, Sinclair D. et al., Sirtuin activators mimic caloric restriction and delay ageing in metazoans, Nature 430, August 2005

Regolazione del SIRT1 nella funzioni cellulari: ruolo dei polifenoli

  • 1 R.R. Alcendor, S. Gao, P. Zhai, D. Zablocki, E. Holle, X. Yu, B. Tian, T. Wagner, S.F. Vatner, J. Sadoshima, Circ. Res. 100 (2007) 1512-1521.
  • 2 S. Michan, D. Sinclair, Biochem. J. 404 (2007) 1-13.
  • 3 S. Lavu, O. Boss, P.J. Elliott, P.D. Lambert, Nat. Rev. Drug Discov. 7 (2008) 841-853.
  • 4 T. Finkel, C.X. Deng, R. Mostoslavsky, Nature 460 (2009) 587-591.
  • 5 T. Yang, A.A. Sauve, AAPS J. 8 (2006) E632-E643.
  • 6 K.T. Howitz, K.J. Bitterman, H.Y. Cohen, D.W. Lamming, S. Lavu, J.G. Wood, R.E. Zipkin, P. Chung, A. Kisielewski, L.L. Zhang, B. Scherer, D.A. Sinclair, Nature
  • 425 (2003) 191-196.
  • 7 R.M. Anderson, K.J. Bitterman, J.G. Wood, O. Medvedik, D.A. Sinclair, Nature 423 (2003) 181-185.
  • 8 K.J. Bitterman, R.M. Anderson, H.Y. Cohen, M. Latorre-Esteves, D.A. Sinclair, J. Biol. Chem. 277 (2002) 45099-45107.
  • 9 H.A. Tissenbaum, L. Guarente, Nature 410 (2001) 227-230.
  • 10 S.J. Lin, P.A. Defossez, L. Guarente, Science 289 (2000) 2126-2128.
  • 11 J.M. Davis, E.A. Murphy, M.D. Carmichael, B. Davis, Am. J. Physiol. Regul. Integr. Comp. Physiol. 296 (2009) R1071-R1077.
  • 12 V.C. de Boer, M.C. de Goffau, I.C. Arts, P.C. Hollman, J. Keijer, Mech. Ageing Dev. 127 (2006) 618-627.
  • 13 J.A. Baur, K.J. Pearson, N.L. Price, H.A. Jamieson, C. Lerin, A. Kalra, V.V. Prabhu, J.S. Allard, G. Lopez-Lluch, K. Lewis, P.J. Pistell, S. Poosala, K.G. Becker, O. Boss, D. Gwinn, M. Wang, S. Ramaswamy, K.W. Fishbein, R.G. Spencer, E.G. Lakatta, D. Le Couteur, R.J. Shaw, P. Navas, P. Puigserver, D.K. Ingram, R. De Cabo, D.A. Sinclair, Nature 444 (2006) 337-342.
  • 14 M. Kaeberlein, T. McDonagh, B. Heltweg, J. Hixon, E.A. Westman, S.D. Caldwell, A. Napper, R. Curtis, P.S. DiStefano, S. Fields, A. Bedalov, B.K. Kennedy, J. Biol. Chem. 280 (2005) 17038-17045.
  • 15 M.T. Borra, B.C. Smith, J.M. Denu, J. Biol. Chem. 280 (2005) 17187-17195.
  • 16 H.Y. Cohen, C. Miller, K.J. Bitterman, N.R. Wall, B. Hekking, B. Kessler, K.T. Howitz, M. Gorospe, R. de Cabo, D.A. Sinclair, Science 305 (2004) 390-392.
  • 17 S. Imai, C.M. Armstrong, M. Kaeberlein, L. Guarente, Nature 403 (2000) 795-800.
  • 18 M.T. Borra, F.J. O’Neill, M.D. Jackson, B. Marshall, E. Verdin, K.R. Foltz, J.M. Denu, J. Biol. Chem. 277 (2002) 12632-12641.
  • 19 J. Luo, A.Y. Nikolaev, S. Imai, D. Chen, F. Su, A. Shiloh, L. Guarente, W. Gu, Cell 107 (2001) 137-148.
  • 20 A.A. Sauve, C. Wolberger, V.L. Schramm, J.D. Boeke, Annu. Rev. Biochem. 75 (2006) 435 465.
  • 21 N.M. Borradaile, J.G. Pickering, Aging Cell 8 (2009) 100-112.
  • 22 C.P. Hsu, S. Oka, D. Shao, N. Hariharan, J. Sadoshima, Circ. Res. 105 (2009) 481-491.
  • 23 J.R. Revollo, A.A. Grimm, S. Imai, J. Biol. Chem. 279 (2004) 50754-50763.
  • 24 C. Canto, Z. Gerhart-Hines, J.N. Feige, M. Lagouge, L. Noriega, J.C. Milne, P.J. Elliott, P. Puigserver, J. Auwerx, Nature 458 (2009) 1056-1060.
  • 25 T. Zhang, J.G. Berrocal, K.M. Frizzell, M.J. Gamble, M.E. DuMond, R. Krishnakumar, T. Yang, A.A. Sauve, W.L. Kraus, J. Biol. Chem. 284 (2009) 20408-20417.
  • 26 C. Ho, E. van der Veer, O. Akawi, J.G. Pickering, FEBS Lett. 583 (2009) 3081-3085.
  • 27 G. Suchankova, L.E. Nelson, Z. Gerhart-Hines, M. Kelly, M.S. Gauthier, A.K. Saha, Y. Ido, P. Puigserver, N.B. Ruderman, Biochem. Biophys. Res. Commun. 378 (2009) 836-841.
  • 28 S. Mukherjee, I. Lekli, N. Gurusamy, A.A. Bertelli, D.K. Das, Free Radic. Biol. Med. 46 (2009) 573-578.
  • 29 X. Hou, S. Xu, K.A. Maitland-Toolan, K. Sato, B. Jiang, Y. Ido, F. Lan, K. Walsh, M. Wierzbicki, T.J. Verbeuren, R.A. Cohen, M. Zang, J. Biol. Chem. 283 (2008) 20015-20026.
  • 30 J.H. Um, S.J. Park, H. Kang, S. Yang, M. Foretz, M.W. McBurney, M.K. Kim, B. Viollet, J.H. Chung, Diabetes 59 (2010) 554-563.
  • 31 M. Fulco, Y. Cen, P. Zhao, E.P. Hoffman, M.W. McBurney, A.A. Sauve, V. Sartorelli, Dev. Cell 14 (2008) 661-673.
  • 32 X. Zhao, J.W. Zmijewski, E. Lorne, G. Liu, Y.J. Park, Y. Tsuruta, E. Abraham, Am. J. Physiol. Lung Cell. Mol. Physiol. 295 (2008) L497-L504.
  • 33 M. Suwa, H. Nakano, Z. Radak, S. Kumagai, Metabolism, 2010, doi:10.1016/ j.metabol.2010.03.003.
  • 34 M. Pacholec, J.E. Bleasdale, B. Chrunyk, D. Cunningham, D. Flynn, R.S. Garofalo, D. Griffith, M. Griffor, P. Loulakis, B. Pabst, X. Qiu, B. Stockman, V. Thanabal, A. Varghese, J. Ward, J. Withka, K. Ahn, J. Biol. Chem. 285 (2010) 8340-8351.
  • 35 D. Beher, J. Wu, S. Cumine, K.W. Kim, S.C. Lu, L. Atangan, M. Wang, Chem. Biol. Drug Des. 74 (2009) 619-624.
  • 36 Q. Huang, H.M. Shen, Autophagy 5 (2009) 273-276.
  • 37 U. Kolthur-Seetharam, F. Dantzer, M.W. McBurney, G. de Murcia, P. Sassone-Corsi, Cell Cycle 5 (2006) 873-877.
  • 38 A. Furukawa, S. Tada-Oikawa, S. Kawanishi, S. Oikawa, Cell. Physiol. Biochem. 20 (2007) 45-54.
  • 39 S. Caito, S. Rajendrasozhan, S. Cook, S. Chung, H. Yao, A.E. Friedman, P.S. Brookes, I. Rahman, FASEB J., 2010, doi:10.1096/fj.09-151308.
  • 40 E.H. Hong, S.J. Lee, J.S. Kim, K.H. Lee, H.D. Um, J.H. Kim, S.J. Kim, J.I. Kim, S.G. Hwang, J. Biol. Chem. 285 (2010) 1283-1295.
  • 41 X. Liu, H. Conner, T. Kobayashi, H. Kim, F. Wen, S. Abe, Q. Fang, X. Wang, M. Hashimoto, P. Bitterman, S.I. Rennard, Am. J. Respir. Cell Mol. Biol. 33 (2005) 121-129.
  • 42 T. Lin, M.S. Yang, Toxicology 245 (2008) 147-153.
  • 43 P.O. Hassa, M.O. Hottiger, Front. Biosci. 13 (2008) 3046-3082.
  • 44 H.J. Moonen, L. Geraets, A. Vaarhorst, A. Bast, E.F. Wouters, G.J. Hageman, Biochem. Biophys. Res. Commun. 338 (2005) 1805-1810.
  • 45 G.J. Hageman, I. Larik, H.J. Pennings, G.R. Haenen, E.F. Wouters, A. Bast, Free Radic. Biol. Med. 35 (2003) 140-148.
  • 46 A.R. Weseler, L. Geraets, H.J. Moonen, R.J. Manders, L.J. van Loon, H.J. Pennings, E.F. Wouters, A. Bast, G.J. Hageman, J. Nutr. 139 (2009) 952-957.
  • 47 S. Caito, J.W. Hwang, S. Chung, H. Yao, I.K. Sundar, I. Rahman, Biochem. Biophys. Res. Commun. 392 (2010) 264-270.
  • 48 R. El Ramy, N. Magroun, N. Messadecq, L.R. Gauthier, F.D. Boussin, U. Kolthur-Seetharam, V. Schreiber, M.W. McBurney, P. Sassone-Corsi, F. Dantzer, Cell. Mol. Life Sci. 66 (2009) 3219-3234.
  • 49 S.B. Rajamohan, V.B. Pillai, M. Gupta, N.R. Sundaresan, K.G. Birukov, S. Samant, M.O. Hottiger, M.P. Gupta, Mol. Cell. Biol. 29 (2009) 4116-4129.
  • 50 P.J. Elliott, M. Jirousek, Curr. Opin. Investig. Drug. 9 (2008) 371-378.
  • 51 P.A. Grimsrud, H. Xie, T.J. Griffin, D.A. Bernlohr, J. Biol. Chem. 283 (2008) 21837-21841.
  • 52 T. Nystrom, EMBO J. 24 (2005) 1311-1317.
  • 53 M. Tanno, A. Kuno, T. Yano, T. Miura, S. Hisahara, S. Ishikawa, K. Shimamoto, Y. Horio, J. Biol. Chem. 285 (2010) 8375-8382.
  • 54 G. Arunachalam, H. Yao, I.K. Sundar, S. Caito, I. Rahman, Biochem. Biophys. Res. Commun. 393 (2010) 66-72.
  • 55 S. Rajendrasozhan, S.R. Yang, V.L. Kinnula, I. Rahman, Am. J. Respir. Crit. Care Med. 177 (2008) 861-870.
  • 56 S.R. Yang, J. Wright, M. Bauter, K. Seweryniak, A. Kode, I. Rahman, Am. J. Physiol. Lung Cell. Mol. Physiol. 292 (2007) L567-L576.
  • 57 H. Kang, J.W. Jung, M.K. Kim, J.H. Chung, PLoS One 4 (2009) e6611-e6618.
  • 58 T. Sasaki, B. Maier, K.D. Koclega, M. Chruszcz, W. Gluba, P.T. Stukenberg, W. Minor, H. Scrable, PLoS One 3 (2008) e4020-e4032.
  • 59 J.V. Olsen, B. Blagoev, F. Gnad, B. Macek, C. Kumar, P. Mortensen, M. Mann, Cell 127 (2006) 635-648.
  • 60 B. Zschoernig, U. Mahlknecht, Biochem. Biophys. Res. Commun. 381 (2009) 372-377.
  • 61 N. Nasrin, V.K. Kaushik, E. Fortier, D. Wall, K.J. Pearson, R. de Cabo, L. Bordone, PLoS One 4 (2009) e8414-e8422.
  • 62 R.S. Zee, C.B. Yoo, D.R. Pimentel, D.H. Perlman, J.R. Burgoyne, X. Hou, M.E. McComb, C.E. Costello, R.A. Cohen, M. Bachschmid, Antioxid. Redox. Sig., 2010, doi:10.1089/ars.2010.3251.
  • 63 Z.I. Ungvari, N. Labinskyy, P. Mukhopadhyay, J.T. Pinto, Z. Bagi, P. Ballabh, C. Zhang, P. Pacher, A. Csiszar, Am. J. Physiol. Heart Circ. Physiol. 297 (2009) H1876-H1881.
  • 64 Y. Nakamaru, C. Vuppusetty, H. Wada, J.C. Milne, M. Ito, C. Rossios, M. Elliot, J. Hogg, S. Kharitonov, H. Goto, J.E. Bemis, P. Elliott, P.J. Barnes, K. Ito, FASEB J. 23 (2009) 2810-2819.
  • 65 K.C. Choi, M.G. Jung, Y.H. Lee, J.C. Yoon, S.H. Kwon, H.B. Kang, M.J. Kim, J.H. Cha, Y.J. Kim, W.J. Jun, J.M. Lee, H.G. Yoon, Cancer Res. 69 (2009) 583-592.
  • 66 Y. Feng, J. Wu, L. Chen, C. Luo, X. Shen, K. Chen, H. Jiang, D. Liu, Anal. Biochem. 395 (2009) 205-210.
  • 67 Y. Yamazaki, I. Usui, Y. Kanatani, Y. Matsuya, K. Tsuneyama, S. Fujisaka, A. Bukhari, H. Suzuki, S. Senda, S. Imanishi, K. Hirata, M. Ishiki, R. Hayashi, M. Urakaze, H. Nemoto, M. Kobayashi, K. Tobe, Am. J. Physiol. Endocrinol. Metab., 2009, doi:10.1152/ajpendo.90997.2008.
  • 68 J.J. Smith, R.D. Kenney, D.J. Gagne, B.P. Frushour, W. Ladd, H.L. Galonek, K. Israelian, J. Song, G. Razvadauskaite, A.V. Lynch, D.P. Carney, R.J. Johnson, S. Lavu, A. Iffland, P.J. Elliott, P.D. Lambert, K.O. Elliston, M.R. Jirousek, J.C. Milne, O. Boss, BMC Syst. Biol. 3 (2009) 31-44.
  • 69 J.C. Milne, P.D. Lambert, S. Schenk, D.P. Carney, J.J. Smith, D.J. Gagne, L. Jin, O. Boss, R.B. Perni, C.B. Vu, J.E. Bemis, R. Xie, J.S. Disch, P.Y. Ng, J.J. Nunes, A.V. Lynch, H. Yang, H. Galonek, K. Israelian, W. Choy, A. Iffland, S. Lavu, O. Medvedik, D.A. Sinclair, J.M. Olefsky, M.R. Jirousek, P.J. Elliott, C.H. Westphal, Nature 450 (2007) 712-716.
  • 70 B. Rogina, S.L. Helfand, Proc. Natl. Acad. Sci. USA 101 (2004) 15998-16003.
  • 71 D. Chen, A.D. Steele, S. Lindquist, L. Guarente, Science 310 (2005) 1641.
  • 72 L. Bordone, L. Guarente, Nat. Rev. Mol. Cell Biol. 6 (2005) 298-305.
  • 73 D.A. Sinclair, L. Guarente, Sci. Am. 294 (2006) 48-51. 54-47.
  • 74 S.P. Lu, S.J. Lin, Biochim. Biophys. Acta, 2009, doi:10.1016/ j.bbapap.2009.09.030.
  • 75 S. Kume, T. Uzu, K. Horiike, M. Chin-Kanasaki, K. Isshiki, S.I. Araki, T. Sugimoto, M. Haneda, A. Kashiwagi, D. Koya, J. Clin. Invest. 120 (2010) 1043-1055.
  • 76 L. Guarente, Cell 132 (2008) 171-176.
  • 77 J.T. Rodgers, C. Lerin, W. Haas, S.P. Gygi, B.M. Spiegelman, P. Puigserver, Nature 434 (2005) 113-118.
  • 78 L. Bordone, D. Cohen, A. Robinson, M.C. Motta, E. van Veen, A. Czopik, A.D. Steele, H. Crowe, S. Marmor, J. Luo, W. Gu, L. Guarente, Aging Cell 6 (2007) 759-767.
  • 79 M. Kaeberlein, K.T. Kirkland, S. Fields, B.K. Kennedy, PLoS Biol. 2 (2004) E296-E302.
  • 80 M. Kaeberlein, K.K. Steffen, D. Hu, N. Dang, E.O. Kerr, M. Tsuchiya, S. Fields, B.K. Kennedy, Science 312 (2006) 1312; author reply 1312.
  • 81 M. Kaeberlein, R.W. Powers 3rd, Ageing Res. Rev. 6 (2007) 128-140.
  • 82 J.G. Wood, B. Rogina, S. Lavu, K. Howitz, S.L. Helfand, M. Tatar, D. Sinclair, Nature 430 (2004) 686-689.
  • 83 D.R. Valenzano, E. Terzibasi, T. Genade, A. Cattaneo, L. Domenici, A. Cellerino, Curr. Biol. 16 (2006) 296-300.
  • 84 F. Yeung, J.E. Hoberg, C.S. Ramsey, M.D. Keller, D.R. Jones, R.A. Frye, M.W. Mayo, EMBO J. 23 (2004) 2369-2380.
  • 85 B.L. Tang, C.E. Chua, Biochem. Biophys. Res. Commun. 391 (2010) 6-10.
  • 86 J.A. Baur, Biochim. Biophys. Acta, 2009, doi:10.1016/j.bbapap.2009.10.025.
  • 87 M. Lagouge, C. Argmann, Z. Gerhart-Hines, H. Meziane, C. Lerin, F. Daussin, N. Messadeq, J. Milne, P. Lambert, P. Elliott, B. Geny, M. Laakso, P. Puigserver, J. Auwerx, Cell 127 (2006) 1109-1122.
  • 88 S.R. Kim, K.S. Lee, S.J. Park, K.H. Min, Y.H. Choe, H. Moon, W.H. Yoo, H.J. Chae, M.K. Han, Y.C. Lee, J. Allergy Clin. Immunol. 125 (2010) 449-460.
  • 89 E. Jones, R.E. Hughes, Exp. Gerontol. 17 (1982) 213-217.
  • 90 G. Boily, E.L. Seifert, L. Bevilacqua, X.H. He, G. Sabourin, C. Estey, C. Moffat, S. Crawford, S. Saliba, K. Jardine, J. Xuan, M. Evans, M.E. Harper, M.W. McBurney, PLoS One 3 (2008) e1759-e1770.
  • 91 W. Xia, Z. Wang, Q. Wang, J. Han, C. Zhao, Y. Hong, L. Zeng, L. Tang, W. Ying, Curr. Pharm. Des. 15 (2009) 12-19.
  • 92 J.A. Baur, D.A. Sinclair, Nat. Rev. Drug Discov. 5 (2006) 493-506.
  • 93 C.H. Westphal, M.A. Dipp, L. Guarente, Trends Biochem. Sci. 32 (2007) 555-560.
  • 94 S. Imai, W. Kiess, Front. Biosci. 14 (2009) 2983-2995.
  • 95 L. Bordone, M.C. Motta, F. Picard, A. Robinson, U.S. Jhala, J. Apfeld, T. McDonagh, M. Lemieux, M. McBurney, A. Szilvasi, E.J. Easlon, S.J. Lin, L. Guarente, PLoS Biol. 4 (2006) e31.
  • 96 K.A. Moynihan, A.A. Grimm, M.M. Plueger, E. Bernal-Mizrachi, E. Ford, C. Cras-Meneur, M.A. Permutt, S. Imai, Cell Metab. 2 (2005) 105-117.
  • 97 P.T. Pfluger, D. Herranz, S. Velasco-Miguel, M. Serrano, M.H. Tschop, Proc. Natl. Acad. Sci. USA 105 (2008) 9793-9798.
  • 98 F. Xu, Z. Gao, J. Zhang, C.A. Rivera, J. Yin, J. Weng, J. Ye, Endocrinology, 2010, doi:10.1210/en.2009-1013.
  • 99 C. Canto, J. Auwerx, Curr. Opin. Lipidol. 20 (2009) 98-105.
  • 100 M. van der Toorn, D.J. Slebos, H.G. de Bruin, H.G. Leuvenink, S.J. Bakker, R.O. Gans, G.H. Koeter, A.J. van Oosterhout, H.F. Kauffman, Am. J. Physiol. Lung Cell. Mol. Physiol. 292 (2007) L1211-L1218.
  • 101 S. Klaus, S. Pultz, C. Thone-Reineke, S. Wolfram, Int. J. Obes. (Lond.) 29 (2005) 615-623.
  • 102 L.F. Chen, Y. Mu, W.C. Greene, EMBO J. 21 (2002) 6539-6548.
  • 103 R. Zhang, H.Z. Chen, J.J. Liu, Y.Y. Jia, Z.Q. Zhang, R.F. Yang, Y. Zhang, J. Xu, Y.S. Wei, D.P. Liu, C.C. Liang, J. Biol. Chem. 285 (2010) 7097-7110.
  • 104 Z. Gao, J. Ye, Biochem. Biophys. Res. Commun. 376 (2008) 793-796.
  • 105 J. Zhang, S.M. Lee, S. Shannon, B. Gao, W. Chen, A. Chen, R. Divekar, M.W. McBurney, H. Braley-Mullen, H. Zaghouani, D. Fang, J. Clin. Invest. 119 (2009) 3048-3058.
  • 106 J.C. Milne, J.M. Denu, Curr. Opin. Chem. Biol. 12 (2008) 11-17.
  • 107 T. Yoshizaki, S. Schenk, T. Imamura, J.L. Babendure, N. Sonoda, E.J. Bae, D. Oh, M. Lu, J.C. Milne, C. Westphal, G. Bandyopadhyay, J.M. Olefsky, Am. J. Physiol. Endocrinol. Metab. 298 (2010) E419-E428.
  • 108 U.P. Singh, N. Singh, B. Singh, L.J. Hofseth, B.L. Price, M. Nagarkatti, P. Nagarkatti, J. Pharmacol. Exp. Ther. 332 (2010) 829-839.
  • 109 M.A. Birrell, K. McCluskie, S. Wong, L.E. Donnelly, P.J. Barnes, M.G. Belvisi, FASEB J. 19 (2005) 840-841.
  • 110 R. Amat, G. Solanes, M. Giralt, F. Villarroya, J. Biol. Chem. 282 (2007) 34066-34076.
  • 111 L.E. Donnelly, R. Newton, G.E. Kennedy, P.S. Fenwick, R.H. Leung, K. Ito, R.E. Russell, P.J. Barnes, Am. J. Physiol. Lung Cell. Mol. Physiol. 287 (2004) L774-L783.
  • 112 S.K. Manna, A. Mukhopadhyay, B.B. Aggarwal, J. Immunol. 164 (2000) 6509-6519.
  • 113 J. Leiro, J.A. Arranz, N. Fraiz, M.L. Sanmartin, E. Quezada, F. Orallo, Int. Immunopharmacol. 5 (2005) 393-406.
  • 114 H.K. Biesalski, Curr. Opin. Clin. Nutr. Metab. Care 10 (2007) 724-728.
  • 115 Z. Dong, W. Ma, C. Huang, C.S. Yang, Cancer Res. 57 (1997) 4414-4419.
  • 116 M. Nomura, W. Ma, N. Chen, A.M. Bode, Z. Dong, Carcinogenesis 21 (2000) 1885-1890.
  • 117 D.N. Syed, F. Afaq, M.H. Kweon, N. Hadi, N. Bhatia, V.S. Spiegelman, H. Mukhtar, Oncogene 26 (2007) 673-682.
  • 118 L.K. Stewart, J.L. Soileau, D. Ribnicky, Z.Q. Wang, I. Raskin, A. Poulev, M. Majewski, W.T. Cefalu, T.W. Gettys, Metabolism 57 (2008) S39-S46.
  • 119 W.W. Busse, D.E. Kopp, E. Middleton Jr., J. Allergy Clin. Immunol. 73 (1984) 801-809.
  • 120 G. Ramadori, L. Gautron, T. Fujikawa, C.R. Vianna, J.K. Elmquist, R. Coppari, Endocrinology 150 (2009) 5326-5333.
  • 121 J. Yang, X. Kong, M.E. Martins-Santos, G. Aleman, E. Chaco, G.E. Liu, S.Y. Wu, D. Samols, P. Hakimi, C.M. Chiang, R.W. Hanson, J. Biol. Chem. 284 (2009) 27042-27053.
  • 122 H.L. Cheng, R. Mostoslavsky, S. Saito, J.P. Manis, Y. Gu, P. Patel, R. Bronson, E. Appella, F.W. Alt, K.F. Chua, Proc. Natl. Acad. Sci. USA 100 (2003) 10794-10799.
  • 123 J. van Loosdregt, Y. Vercoulen, T. Guichelaar, Y.Y. Gent, J.M. Beekman, O. van Beekum, A.B. Brenkman, D.J. Hijnen, T. Mutis, E. Kalkhoven, B.J. Prakken, P.J. Coffer, Blood 115 (2010) 965-974.
  • 124 J. Sequeira, G. Boily, S. Bazinet, S. Saliba, X. He, K. Jardine, C. Kennedy, W. Staines, C. Rousseaux, R. Mueller, M.W. McBurney, Exp. Cell Res. 314 (2008) 3069-3074.
  • 125 M. Lee, S. Kim, O.K. Kwon, S.R. Oh, H.K. Lee, K. Ahn, Int. Immunopharmacol. 9 (2009) 418-424.
  • 126 N.P. Singh, V.L. Hegde, L.J. Hofseth, M. Nagarkatti, P. Nagarkatti, Mol. Pharmacol. 72 (2007) 1508-1521.
  • 127 S. Sharma, K. Chopra, S.K. Kulkarni, J.N. Agrewala, Clin. Exp. Immunol. 147 (2007) 155 163.
  • 128 X. Gao, D. Deeb, J. Media, G. Divine, H. Jiang, R.A. Chapman, S.C. Gautam, Biochem. Pharmacol. 66 (2003) 2427-2435.
  • 129 J.H. Shim, H.S. Choi, A. Pugliese, S.Y. Lee, J.I. Chae, B.Y. Choi, A.M. Bode, Z. Dong, J. Biol. Chem. 283 (2008) 28370-28379.
  • 130 E.K. Song, H. Hur, M.K. Han, Arch. Pharm. Res. 26 (2003) 559-563.
  • 131 H.J. Park, C.M. Lee, I.D. Jung, J.S. Lee, Y.I. Jeong, J.H. Chang, S.H. Chun, M.J. Kim, I.W. Choi, S.C. Ahn, Y.K. Shin, S.R. Yeom, Y.M. Park, Int. Immunopharmacol. 9 (2009) 261-267.
  • 132 M.E. Giannakou, L. Partridge, Trends Cell Biol. 14 (2004) 408-412.
  • 133 A. Brunet, L.B. Sweeney, J.F. Sturgill, K.F. Chua, P.L. Greer, Y. Lin, H. Tran, S.E. Ross, R. Mostoslavsky, H.Y. Cohen, L.S. Hu, H.L. Cheng, M.P. Jedrychowski, S.P. Gygi, D.A. Sinclair, F.W. Alt, M.E. Greenberg, Science 303 (2004) 2011-2015.
  • 134 S.C. Dryden, F.A. Nahhas, J.E. Nowak, A.S. Goustin, M.A. Tainsky, Mol. Cell. Biol. 23 (2003) 3173-3185.
  • 135 G.J. Kops, T.B. Dansen, P.E. Polderman, I. Saarloos, K.W. Wirtz, P.J. Coffer, T.T. Huang, J.L. Bos, R.H. Medema, B.M. Burgering, Nature 419 (2002) 316-321.
  • 136 M.C. Motta, N. Divecha, M. Lemieux, C. Kamel, D. Chen, W. Gu, Y. Bultsma, M. McBurney, L. Guarente, Cell 116 (2004) 551-563.
  • 137 H. You, T.W. Mak, Cell Cycle 4 (2005) 37-38.
  • 138 A. van der Horst, L.G. Tertoolen, L.M. de Vries-Smits, R.A. Frye, R.H. Medema, B.M. Burgering, J. Biol. Chem. 279 (2004) 28873-28879.
  • 139 C.J. Chen, W. Yu, Y.C. Fu, X. Wang, J.L. Li, W. Wang, Biochem. Biophys. Res. Commun. 378 (2009) 389-393.
  • 140 W. He, Y. Wang, M.Z. Zhang, L. You, L.S. Davis, H. Fan, H.C. Yang, A.B. Fogo, R. Zent, R.C. Harris, M.D. Breyer, C.M. Hao, J. Clin. Invest. 120 (2010) 1056-1068.
  • 141 W.Y. Chen, D.H. Wang, R.C. Yen, J. Luo, W. Gu, S.B. Baylin, Cell 123 (2005) 437-448.
  • 142 H. Vaziri, S.K. Dessain, E. Ng Eaton, S.I. Imai, R.A. Frye, T.K. Pandita, L. Guarente, R.A. Weinberg, Cell 107 (2001) 149-159.
  • 143 J. Luo, M. Li, Y. Tang, M. Laszkowska, R.G. Roeder, W. Gu, Proc. Natl. Acad. Sci. USA 101 (2004) 2259-2264.
  • 144 P. Puigserver, B.M. Spiegelman, Endocr. Rev. 24 (2003) 78-90.
  • 145 G. Boily, X.H. He, B. Pearce, K. Jardine, M.W. McBurney, Oncogene 28 (2009) 2882-2893.
  • 146 D.M. Huffman, W.E. Grizzle, M.M. Bamman, J.S. Kim, I.A. Eltoum, A. Elgavish, T.R. Nagy, Cancer Res. 67 (2007) 6612-6618.
  • 147 T. Liu, P.Y. Liu, G.M. Marshall, Cancer Res. 69 (2009) 1702-1705.
  • 148 R. Firestein, G. Blander, S. Michan, P. Oberdoerffer, S. Ogino, J. Campbell, A. Bhimavarapu, S. Luikenhuis, R. de Cabo, C. Fuchs, W.C. Hahn, L.P. Guarente, D.A. Sinclair, PLoS One 3 (2008) e2008-e2020.
  • 149 R.H. Wang, Y. Zheng, H.S. Kim, X. Xu, L. Cao, T. Luhasen, M.H. Lee, C. Xiao, A. Vassilopoulos, W. Chen, K. Gardner, Y.G. Man, M.C. Hung, T. Finkel, C.X. Deng, Mol. Cell. 32 (2008) 11-20.
  • 150 M.H. Lee, B.Y. Choi, J.K. Kundu, Y.K. Shin, H.K. Na, Y.J. Surh, Cancer Res. 69 (2009) 7449-7458.
  • 151 L. Whyte, Y.Y. Huang, K. Torres, R.G. Mehta, Cancer Res. 67 (2007) 12007-12017.
  • 152 P.R. van Ginkel, D. Sareen, L. Subramanian, Q. Walker, S.R. Darjatmoko, M.J. Lindstrom, A. Kulkarni, D.M. Albert, A.S. Polans, Clin. Cancer Res. 13 (2007) 5162-5169.
  • 153 S. Paliwal, J. Sundaram, S. Mitragotri, Brit. J. Cancer 92 (2005) 499-502.
  • 154 A. Murakami, H. Ashida, J. Terao, Cancer Lett. 269 (2008) 315-325.
  • 155 M. Orimo, T. Minamino, H. Miyauchi, K. Tateno, S. Okada, J. Moriya, I. Komuro, Arterioscler. Thromb. Vasc. Biol. 29 (2009) 889-894.
  • 156 T. Sasaki, B. Maier, A. Bartke, H. Scrable, Aging Cell 5 (2006) 413-422.
  • 157 H. Ota, M. Akishita, M. Eto, K. Iijima, M. Kaneki, Y. Ouchi, J. Mol. Cell. Cardiol. 43 (2007) 571-579.
  • 158 S. Rajendrasozhan, S.R. Yang, S. Caito, I. Rahman, Am. J. Respir. Crit. Care Med. 177 (2008) A266.
  • 159 W. MacNee, R.M. Tuder, Proc. Am. Thorac. Soc. 6 (2009) 527-531.
  • 160 L.L. Zamin, E.C. Filippi-Chiela, P. Dillenburg-Pilla, F. Horn, C. Salbego, G. Lenz, Cancer Sci. 100 (2009) 1655-1662.
  • 161 M. Stefani, M.A. Markus, R.C. Lin, M. Pinese, I.W. Dawes, B.J. Morris, Ann. NY Acad. Sci. 1114 (2007) 407-418.
  • 162 H. Ota, M. Eto, S. Ogawa, K. Iijima, M. Akishita, Y. Ouchi, J. Atheroscler. Thromb. (2010).
  • 163 X. Chen, Y. Chi, A. Bloecher, R. Aebersold, B.E. Clurman, J.M. Roberts, Mol. Cell. 16 (2004) 839-847.
  • 164 M. Hansen, A. Chandra, L.L. Mitic, B. Onken, M. Driscoll, C. Kenyon, PLoS Genet. 4 (2008) e24.
  • 165 H.S. Ghosh, M. McBurney, P.D. Robbins, PLoS One 5 (2010) e9199.
  • 166 I.H. Lee, L. Cao, R. Mostoslavsky, D.B. Lombard, J. Liu, N.E. Bruns, M. Tsokos, F.W. Alt, T. Finkel, Proc. Natl. Acad. Sci. USA 105 (2008) 3374-3379.
  • 167 C.P. Hsu, N. Hariharan, R.R. Alcendor, S. Oka, J. Sadoshima, Autophagy 5 (2009) 1229-1231.
  • 168 Y. Matsui, H. Takagi, X. Qu, M. Abdellatif, H. Sakoda, T. Asano, B. Levine, J. Sadoshima, Circ. Res. 100 (2007) 914-922.
  • 169 H. Takagi, Y. Matsui, S. Hirotani, H. Sakoda, T. Asano, J. Sadoshima, Autophagy 3 (2007) 405-407.
  • 170 N.B. Ruderman, X.J. Xu, L. Nelson, J.M. Cacicedo, A.K. Saha, F. Lan, Y. Ido, Am. J. Physiol. Endocrinol. Metab. 298 (2010) E751-E760.
  • 171 F. Lan, J.M. Cacicedo, N. Ruderman, Y. Ido, J. Biol. Chem. 283 (2008) 27628-27635.
  • 172 S.M. Armour, J.A. Baur, S.N. Hsieh, A. Land-Bracha, S.M. Thomas, D.A. Sinclair, Aging (Albany NY) 1 (2009) 515-528.
  • 173 D. Tang, R. Kang, W. Xiao, H. Zhang, M.T. Lotze, H. Wang, X. Xiao, Am. J. Respir. Cell Mol. Biol. 41 (2009) 651-660.
  • 174 S.W. Ryter, Z.H. Chen, H.P. Kim, A.M. Choi, Autophagy 5 (2009) 235-237.
  • 175 Z.H. Chen, H.P. Kim, F.C. Sciurba, S.J. Lee, C. Feghali-Bostwick, D.B. Stolz, R.Dhir, R.J. Landreneau, M.J. Schuchert, S.A. Yousem, K. Nakahira, J.M. Pilewski, J.S. Lee, Y. Zhang, S.W. Ryter, A.M. Choi, PLoS One 3 (2008) e3316.
  • 176 P. Marchetti, M. Masini, Autophagy 5 (2009) 1055-1056.
  • 177 A. Ost, K. Svensson, I. Ruishalme, C. Brannmark, N. Franck, H. Krook, P. Sandstrom, P. Kjolhede, P. Stralfors, Mol. Med. (2010).
  • 178 H.C. Kim, M. Mofarrahi, S.N. Hussain, Int. J. Chron. Obstruct. Pulmon. Dis. 3 (2008) 637-658.
  • 179 R. Casaburi, R. Gosselink, M. Decramer, R.P.N. Dekhuijzen, M. Fournier, M.I. Lewis, F. Maltais, D.A. Oelberg, M.B. Reid, J. Roca, A.M.W. Schols, G.C. Sieck, D.M. Systrom, P.D. Wagner, T.J. Williams, E. Wouters, Am J Respir Crit Care Med 159 (1999) S1-S40.
  • 180 D.E. Kelley, J. He, E.V. Menshikova, V.B. Ritov, Diabetes 51 (2002) 2944-2950.
  • 181 Z. Gerhart-Hines, J.T. Rodgers, O. Bare, C. Lerin, S.H. Kim, R. Mostoslavsky, F.W. Alt, Z. Wu, P. Puigserver, EMBO J. 26 (2007) 1913-1923.
  • 182 R. Amat, A. Planavila, S.L. Chen, R. Iglesias, M. Giralt, F. Villarroya, J. Biol. Chem. 284 (2009) 21872-21880.
  • 183 B. Dasgupta, J. Milbrandt, Proc. Natl. Acad. Sci. USA 104 (2007) 7217-7222.
  • 184 S.M. Shin, I.J. Cho, S.G. Kim, Mol. Pharmacol. 76 (2009) 884-895. [185] T. Murase, S. Haramizu, A. Shimotoyodome, I. Tokimitsu, T. Hase, Am. J. Physiol. Regul. Integr. Comp. Physiol. 290 (2006) R1550-R1556.
  • 186 D.C. Nieman, A.S. Williams, R.A. Shanely, F. Jin, S.R. McAnulty, N.T. Triplett, M.D. Austin, D.A. Henson, Med. Sci. Sport. Exer. 42 (2010) 338-345.
  • 187 S.M. Wyke, S.T. Russell, M.J. Tisdale, Brit. J. Cancer 91 (2004) 1742-1750.
  • 188 L. Qiang, H. Wang, S.R. Farmer, Mol. Cell. Biol. 27 (2007) 4698-4707.
  • 189 L. Qiao, J. Shao, J. Biol. Chem. 281 (2006) 39915-39924.
  • 190 F. Picard, M. Kurtev, N. Chung, A. Topark-Ngarm, T. Senawong, R. Machado De Oliveira, M. Leid, M.W. McBurney, L. Guarente, Nature 429 (2004) 771-776.
  • 191 J.M. Ajmo, X. Liang, C.Q. Rogers, B. Pennock, M. You, Am. J. Physiol. Gastrointest. Liver Physiol. 295 (2008) G833-G842.
  • 192 J. Lin, M.A. Della-Fera, C.A. Baile, Obes. Res. 13 (2005) 982-990.
  • 193 H.J. Park, J.Y. Yang, S. Ambati, M.A. Della-Fera, D.B. Hausman, S. Rayalam, C.A. Baile, J. Med. Food 11 (2008) 773-783.
  • 194 J. Ahn, H. Lee, S. Kim, J. Park, T. Ha, Biochem. Biophys. Res. Commun. 373 (2008) 545-549.
  • 195 X. Li, S. Zhang, G. Blander, J.G. Tse, M. Krieger, L. Guarente, Mol. Cell. 28 (2007) 91-106.
  • 196 G.L. Wang, Y.C. Fu, W.C. Xu, Y.Q. Feng, S.R. Fang, X.H. Zhou, Biochem. Biophys. Res. Commun. 380 (2009) 644-649.
  • 197 M. Potente, S. Dimmeler, Cell Cycle 7 (2008) 2117-2122.
  • 198 Q.J. Zhang, Z. Wang, H.Z. Chen, S. Zhou, W. Zheng, G. Liu, Y.S. Wei, H. Cai, D.P. Liu, C.C. Liang, Cardiovasc. Res. 80 (2008) 191-199.
  • 199 I. Mattagajasingh, C.S. Kim, A. Naqvi, T. Yamamori, T.A. Hoffman, S.B. Jung, J. DeRicco, K. Kasuno, K. Irani, Proc. Natl. Acad. Sci. USA 104 (2007) 14855-14860.
  • 200 B.Y. Jin, J.L. Sartoretto, V.N. Gladyshev, T. Michel, Proc. Natl. Acad. Sci. USA 106 (2009) 17343-17348.
  • 201 A. Csiszar, N. Labinskyy, R. Jimenez, J.T. Pinto, P. Ballabh, G. Losonczy, K.J. Pearson, R. de Cabo, Z. Ungvari, Mech. Ageing Dev. 130 (2009) 518-527.
  • 202 A. Csiszar, N. Labinskyy, A. Podlutsky, P.M. Kaminski, M.S. Wolin, C. Zhang, P. Mukhopadhyay, P. Pacher, F. Hu, R. de Cabo, P. Ballabh, Z. Ungvari, Am. J. Physiol. Heart Circ. Physiol. 294 (2008) H2721-J2735.
  • 203 J.B. Pillai, M. Gupta, S.B. Rajamohan, R. Lang, J. Raman, M.P. Gupta, Am. J. Physiol. Heart Circ. Physiol. 291 (2006) H1545-H1553.
  • 204 J.B. Pillai, A. Isbatan, S. Imai, M.P. Gupta, J. Biol. Chem. 280 (2005) 43121-43130.
  • 205 S.V. Penumathsa, M. Thirunavukkarasu, S. Koneru, B. Juhasz, L. Zhan, R. Pant, V.P. Menon, H. Otani, N. Maulik, J. Mol. Cell. Cardiol. 42 (2007) 508-516.
  • 206 M. Thirunavukkarasu, S.V. Penumathsa, S. Koneru, B. Juhasz, L. Zhan, H. Otani, D. Bagchi, D.K. Das, N. Maulik, Free Radic. Biol. Med. 43 (2007) 720-729.
  • 207 M. Sulaiman, M.J. Matta, N.R. Sunderesan, M.P. Gupta, M. Periasamy, M. Gupta, Am. J. Physiol. Heart Circ. Physiol. 298 (2010) H833-H843.
  • 208 J. Gracia-Sancho, G. Villarreal Jr., Y. Zhang, G. Garcia-Cardena, Cardiovasc. Res. 85 (2010) 514-519.
  • 209 S.V. Penumathsa, S. Koneru, S.M. Samuel, G. Maulik, D. Bagchi, S.F. Yet, V.P. Menon, N. Maulik, Free Radic. Biol. Med. 45 (2008) 1027-1034.
  • 210 W.M. Loke, J.M. Proudfoot, J.M. Hodgson, A.J. McKinley, N. Hime, M. Magat, R. Stocker, K.D. Croft, Arterioscler. Thromb. Vasc. Biol. 30 (2010) 749-757.
  • 211 M. Romero, R. Jimenez, M. Sanchez, R. Lopez-Sepulveda, M.J. Zarzuelo, F. O’Valle, A. Zarzuelo, F. Perez-Vizcaino, J. Duarte, Atherosclerosis 202 (2009) 58-67.
  • 212 M. Sanchez, M. Galisteo, R. Vera, I.C. Villar, A. Zarzuelo, J. Tamargo, F. Perez-Vizcaino, J. Duarte, J. Hypertens. 24 (2006) 75-84.
  • 213 S.H. Ihm, J.O. Lee, S.J. Kim, K.B. Seung, V.B. Schini-Kerth, K. Chang, M.H. Oak, Atherosclerosis 206 (2009) 47-53.
  • 214 J. Hirayama, S. Sahar, B. Grimaldi, T. Tamaru, K. Takamatsu, Y. Nakahata, P. Sassone-Corsi, Nature 450 (2007) 1086-1090.
  • 215 B. Grimaldi, Y. Nakahata, M. Kaluzova, S. Masubuchi, P. Sassone-Corsi, Int. J. Biochem. Cell Biol. 41 (2009) 81-86.
  • 216 Y. Nakahata, M. Kaluzova, B. Grimaldi, S. Sahar, J. Hirayama, D. Chen, L.P. Guarente, P. Sassone-Corsi, Cell 134 (2008) 329-340.
  • 217 M. Doi, J. Hirayama, P. Sassone-Corsi, Cell 125 (2006) 497-508.
  • 218 Y. Nakahata, B. Grimaldi, S. Sahar, J. Hirayama, P. Sassone-Corsi, Curr. Opin. Cell Biol. 19 (2007) 230-237.
  • 219 W.J. Belden, J.C. Dunlap, Cell 134 (2008) 212-214.
  • 220 J. Rutter, M. Reick, S.L. McKnight, Annu. Rev. Biochem. 71 (2002) 307-331.
  • 221 G. Asher, D. Gatfield, M. Stratmann, H. Reinke, C. Dibner, F. Kreppel, R. Mostoslavsky, F.W. Alt, U. Schibler, Cell 134 (2008) 317-328.
  • 222 S.I. Imai, Biochim. Biophys. Acta, 2009, doi:10.1016/j.bbapap.2009.10.024.
  • 223 M. Hayashi, S. Shimba, M. Tezuka, Biol. Pharm. Bull. 30 (2007) 621-626.